B.A./B.Sc. Semester-V
 MATHEMATICS

(Vector Calculus \& Solid Geometry)
Paper-I

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt any FIVE questions in all, choosing at least TWO from each Section.

SECTION-A

I. (a) Define a vector function. Discuss geometrical interpretations of position vector $\overrightarrow{\mathrm{r}}$ and $\frac{\mathrm{d} \overrightarrow{\mathrm{r}}}{\mathrm{dt}}$.
(b) If $\overrightarrow{\mathrm{r}} \cdot \mathrm{d} \overrightarrow{\mathrm{r}}=0$, then show that $\overrightarrow{\mathrm{r}}$ is a constant. 5,5
II. (a) Find the directional derivative of $f(x, y, z)=x^{3} y^{3} z^{3}$ at the point $(1,1,-1)$ in the direction of tangent to the curve $\mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{y}=2 \sin \mathrm{t}+1, \mathrm{z}=\mathrm{t}-\cos \mathrm{t}$ at $\mathrm{t}=0$.
(b) Determine a constant l so that the vector $\overrightarrow{\mathrm{F}}=(\mathrm{x}+3 \mathrm{y}) \mathrm{i}+(\mathrm{y}-2 \mathrm{z}) \mathrm{j}+(\mathrm{x}+\mathrm{lz}) \mathrm{k}$ is solenoidal.
(c) Define gradient of a scaler point function. Show that $\nabla[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$, where \vec{a} and \vec{b} are constant vectors.

4,2,4
271(2116)/RRA-4405
III. (a) Define curl of a vector point function and discuss its physical interpretation.
(b) Prove that:
$\operatorname{grad}(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})=\overrightarrow{\mathrm{v}} \cdot \nabla \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{u}} . \nabla \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{v}} \times \operatorname{curl} \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{u}} \times \operatorname{curl} \overrightarrow{\mathrm{v}}$.
IV. (a) State and prove Stoke's theorem.
(b) Prove that div curl $\overrightarrow{\mathrm{f}}=0$, where $\overrightarrow{\mathrm{f}}$ in any continuously differentiable vector point function.

8,2
V. (a) Prove that $\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}$ is irrotational. Find n when it is solenoidal.
(b) Find the circulation of $\overrightarrow{\mathrm{F}}$ round the curve C , where $\vec{F}=\left(2 x+y^{2}\right) \vec{i}+(3 y-4 x) \vec{j}$ and C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the curve $y^{2}=x$ from $(1,1)$ to $(0,0)$. 5,5

SECTION-B

VI. (a) Trace the locus of the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c}=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive.
(b) Obtain the equation of the surface of revolution obtained by rotating the curve $3 y^{2}-2 z^{2}=6$, $\mathrm{x}=0$ about the z -axis.
VII. (a) Find the condition that the plane $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$ may touch the paraboloids $\frac{x^{2}}{a^{2}} \pm \frac{y^{2}}{b^{2}}=\frac{2 z}{c}$.

271(2116)/RRA-4405 2
(Contd.)
(b) Find the equation of the tangent planes to $2 x^{2}-6 y^{2}+3 z^{2}=5$ which pass through the line

$$
x+9 y-3 z=0=3 x-3 y+6 z-5
$$

VIII.(a) Find the length of the normal chord through $P\left(x_{1}, y_{1}, z_{1}\right)$ of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and prove that if it is equal to $4 \mathrm{PG}_{3}$, where G_{3} the point in which the normal chord meets the plane XOY, then P lies on the cone

$$
\frac{x^{2}}{a^{6}}\left(2 c^{2}-a^{2}\right)+\frac{y^{2}}{b^{6}}\left(2 c^{2}-b^{2}\right)+\frac{z^{2}}{a^{4}}=0
$$

(b) The section of the enveloping cone of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ whose vertex is P by the plane $z=0$ is a rectangular hyperbola. Find the locus of P.
IX. (a) Find the equation of the enveloping cylinder of the paraboloid $\mathrm{ax}^{2}+\mathrm{by}^{2}=2 \mathrm{cz}$ whose generators are parallel to the line $\frac{\mathrm{x}}{\mathrm{l}}=\frac{\mathrm{y}}{\mathrm{m}}=\frac{\mathrm{z}}{\mathrm{n}}$.
(b) Find the equation of the surface on which the normals from the point (α, β, γ) to the elliptic paraboloid $x^{2}+2 y^{2}=4 z$ lies. Also name the surface. 5,5

a2zpapers.com

X. (a) Show that if the origin is the centre of a conicoid, the coefficients of the first degree terms in its equation are all zero.
(b) Reduce the equation :
$6 y^{2}-18 y z-6 z x+2 x y-9 x+5 y-5 z+2=0$
to the standard form, and state the nature of the surface represented by it.

